Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Northwest Pharmaceutical Journal ; 36(4):568-575, 2021.
Artículo en Chino | CAB Abstracts | ID: covidwho-1557912

RESUMEN

Objective To explore the potential effect and mechanism of Fufang Yinhua Jiedu Granules against the coronavirus disease 19 (COVID-19) by means of network pharmacology, and then to verify its anti-coronavirus effect through in vitro models.

2.
Foods ; 10(4)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: covidwho-1241257

RESUMEN

Influenza A virus induces severe respiratory tract infection and results in a serious global health problem. Influenza infection disturbs the cross-talk connection between lung and gut. Probiotic treatment can inhibit influenza virus infection; however, the mechanism remains to be explored. The mice received Lactobacillus mucosae 1025, Bifidobacterium breve CCFM1026, and their mixture MIX for 19 days. Effects of probiotics on clinical symptoms, immune responses, and gut microbial alteration were evaluated. L. mucosae 1025 and MIX significantly reduced the loss of body weight, pathological symptoms, and viral loading. B. breve CCFM1026 significantly reduced the proportion of neutrophils and increased lymphocytes, the expressions of TLR7, MyD88, TRAF6, and TNF-α to restore the immune disorders. MIX increased the antiviral protein MxA expression, the relative abundances of Lactobacillus, Mucispirillum, Adlercreutzia, Bifidobacterium, and further regulated SCFA metabolism resulting in an enhancement of butyrate. The correlation analysis revealed that the butyrate was positively related to MxA expression (p < 0.001) but was negatively related to viral loading (p < 0.05). The results implied the possible antiviral mechanisms that MIX decreased viral loading and increased the antiviral protein MxA expression, which was closely associated with the increased butyrate production resulting from gut microbial alteration.

3.
J Ethnopharmacol ; 275: 114063, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1164034

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Fufang-Yinhua-Jiedu Granules (FFYH) optimized from a Yin-Qiao-San, as traditional Chinese medicine (TCM), was used to treat influenza and upper respiratory tract infection and was recommended for the prevention and treatment of SARS in 2003 and current COVID-19 in Anhui Province in 2020. AIM OF STUDY: In the clinical studies, FFYH was very effective for the treatment of influenza, but the mechanism of action against influenza A virus remains unclear. In the present study, we investigated the antiviral effect of FFYH against influenza A virus in vitro and vivo. Moreover, the potential mechanism of FFYH against influenza A virus in vivo was investigated for the first time. MATERIALS AND METHODS: CPE inhibition assay and HA assay were used to evaluate the in vitro antiviral effects of FFYH against influenza A virus H1N1, H3N2, H5N1, H7N9 and H9N2. Mice were used to evaluate the antiviral effect of FFYH in vivo with ribavirin and lianhuaqingwen as positive controls. RT-PCR was used to quantify the mRNA transcription of TNF-α, IL-6, IFN-γ, IP10, and IL-1ß mRNA. ELISA was used to examine the expression of inflammatory factors such as TNF-α, IL-6, IFN-γ, IP10, and IL-1ß in sera. The blood parameters were analyzed with auto hematology analyzer. Moreover, the potential mechanism of FFYH against influenza A virus in vivo was also investigated. RESULTS: FFYH showed a broad-spectrum of antiviral activity against H1N1, H3N2, H5N1, H7N9, and H9N2 influenza A viruses. Furthermore, FFYH dose-dependently increased the survival rate, significantly prolonged the median survival time of mice, and markedly reduced lung injury caused by influenza A virus. Also, FFYH significantly improve the sick signs, food taken, weight loss, blood parameters, lung index, and lung pathological changes. Moreover, FFYH could markedly inhibit the inflammatory cytokine expression of TNF-α, IL-6, IFN-γ, IP10, IL-10, and IL-1ß mRNA or protein via inhibition of the TLR7/MyD88/NF-κB signaling pathway in vivo. CONCLUSION: FFYH not only showed a broad-spectrum of anti-influenza virus activity in vitro, but also exhibited a significant protective effect against lethal influenza virus infection in vivo. Furthermore, our results indicated that the in vivo antiviral effect of FFYH against influenza virus may be attributed to suppressing the expression of inflammatory cytokines via regulating the TLR7/MyD88/NF-κB signaling pathway. These findings provide evidence for the clinical treatment of influenza A virus infection with FFYH.


Asunto(s)
Antiinflamatorios/farmacología , Antivirales/farmacología , Medicamentos Herbarios Chinos/farmacología , Virus de la Influenza A/efectos de los fármacos , Pulmón/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Receptor Toll-Like 7/metabolismo , Células A549 , Animales , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Perros , Interacciones Huésped-Patógeno , Humanos , Mediadores de Inflamación/metabolismo , Virus de la Influenza A/patogenicidad , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/virología , Células de Riñón Canino Madin Darby , Ratones Endogámicos ICR , FN-kappa B/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/virología , Transducción de Señal , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA